A. Isu Proyek Pembangunan PLTN
Tenaga Nuklir begitu ramai dibicarakan dalam setiap pertemuan-pertemuan penting di berbagai belahan dunia. Indonesia pun turut andil dalam pengembangannya. Bila dilihat dari sejarah dan pengalaman bangsa Indonesia, sebenarnya nuklir bukanlah barang baru bagi Indonesia. Terbukti pada tahun 50-an Presiden pertama Indonesia Soekarno sudah mulai mewujudkan visi tentang energi nuklir, dengan harapan Indonesia akan diakui oleh dunia internasional di bidang ilmu pengetahuan dan teknologi. Alasan utama Indonesia dalam pengembangan PLTN adalah kebutuhan energi yang besar oleh masyarakat Indonesia dengan populasi penduduk yang sangat padat.
Banyak masyarakat Indonesia yang menentang pembangunan PLTN karena dianggap hanya akan memberikan dampak buruk bagi kesehatan dan lingkungan. Setiap permasalahan memiliki solusi, sikap optimistis perlu diterapkan untuk proyek besar seperti ini.
Para peneliti yang bekerja pada BATAN (Badan Tenaga Nuklir Nasional) melalui sarana dan fasilitas yang ada melakukan riset teknologi nuklir untuk pengembangan industri nuklir seperti teknologi reaktor dan keselamatan nuklir dengan menggunakan reaktor riset berdaya 30 MWth, fabrikasi bahan bakar nuklir, pengelolaan limbah radioaktif, keselamatan radiasi dan lingkungan dilakukan dalam rangka persiapan pembangunan Pembangkit Listrik Tenaga Nuklir (PLTN). Adapun dasar pertimbangan pemanfaatan energi nuklir untuk pembangkit listrik yang lebih jelas dan tegas, tercantum pada Undang-undang Nomor 17 Tahun 2007 tentang Rencana Pembangunan Nasional Jangka Panjang. Cukup jelas keseriusan pemerintah dalam perencanaan pembangunan PLTN maka masyarakat tidak perlu merasa takut berlebih karena pastinya para peniliti berpikir panjang mengenai pengelolaan limbah nuklir.
B. Prinsip Kerja PLTN
Prinsip kerja PLTN sebenarnya mirip dengan pembangkit listrik lainnya, misalnya Pembangkit Listrik Tenaga Uap (PLTU). Uap bertekanan tinggi pada PLTU digunakan untuk memutar turbin. Tenaga gerak putar turbin ini kemudian diubah menjadi tenaga listrik dalam sebuah generator.
Perbedaan PLTN dengan pembangkit lain terletak pada bahan bakar yang digunakan untuk menghasilkan uap, yaitu Uranium. Reaksi pembelahan (fisi) inti Uranium menghasilkan tenaga panas (termal) dalam jumlah yang sangat besar serta membebaskan 2 sampai 3 buah neutron
C. Jenis PLTN
C.1. Pressurized Water Reactor (PWR)
PWR adalah jenis reaktor daya nuklir yang menggunakan air ringan biasa sebagai pendingin maupun moderator neutron. Reaktor ini pertama sekali dirancang oleh Westinghouse Bettis Atomic Power Laboratory untuk kepentingan kapal perang, tetapi kemudian rancangan ini dijadikan komersial oleh Westinghouse Nuclear Power Division. Reaktor PWR komersial pertama dibangun di Shippingport, Amerika Serikat yang beroperasi sampai tahun 1982.
Selain Westinghouse, banyak perusahaan lain seperti Asea Brown Boveri-Combustion Engineering (ABB-CE), Framatome, Kraftwerk Union, Siemens, and Mitsubishi yang mengembangkan dan membangun reaktor PWR ini. Reaktor jenis ini merupakan jenis reaktor yang paling umum. Lebih dari 230 buah reaktor digunakan untuk menghasilkan listrik, dan beberapa ratus lainnya digunakan sebagai tenaga penggerak kapal.
Pada reaktor jenis PWR, aliran pendingin utama yang berada di teras reaktor bersuhu mencapai 325oC sehingga perlu diberi tekanan tertentu (sekitar 155 atm) oleh perangkat pressurizer sehingga air tidak dapat mendidih. Pemindah panas, generator uap, digunakan untuk memindahkan panas ke aliran pendingin sekunder yang kemudian mendidih menjadi uap air dan menggerakkan turbin untuk menghasilkan listrik. Uap kemudian diembunkan di dalam kondenser menjadi aliran pendingin sekunder. Aliran ini kembali memasuki generator uap dan menjadi uap kembali, memasuki turbin, dan demikian seterusnya
C.2. Boiling water reactor (BWR)
Reaktor jenis BWR merupakan rancangan reaktor jenis air ringan sebagai pendingin dan moderator, yang juga digunakan di beberapa Pembangkit Listrik Tenaga Nuklir. Reaktor BWR pertama sekali dirancang oleh Allis-Chambers dan General Electric (GE). Sampai saat ini, hanya rancangan General Electric yang masih bertahan. Reaktor BWR rancangan General Electric dibangun di Humboldt Bay di California. Perusahaan lain yang mengembangkan dan membangun reaktor BWR ini adalah ASEA-Atom, Kraftwerk Union, Hitachi. Reaktor ini mempunyai banyak persamaan dengan reaktor PWR; perbedaan yang paling kentara ialah pada reaktor BWR, uap yang digunakan untuk memutar turbin dihasilkan langsung oleh teras reaktor.
Pada reaktor BWR hanya terdapat satu sirkuit aliran pendingin yang bertekanan rendah (sekitar 75 atm) sehingga aliran pendingin tersebut dapat mendidih di dalam teras mencapai suhu 285oC. Uap yang dihasilkan tersebut mengalir menuju perangkat pemisah dan pengering uap yang terletak di atas teras kemudian menuju turbin. Karena air yang berada di sekitar teras selalu mengalami kontaminasi oleh peluruhan radionuklida, maka turbin harus diberi perisai dan perlindungan radiasi sewaktu masa pemeliharaan. Kebanyakan zat radioaktif yang terdapat pada air tersebut beumur paro sangat singkat, misalnya N-16 dengan umur paro 7 detik sehingga ruang turbin dapat dimasuki sesaat setelah reaktor dipadamkan. Uap tersebut kemudian memasuki turbin-generator. Setelah turbin digerakkan, uap diembunkan di kondenser menjadi aliran pendingin, kemudian dipompa ke reaktor dan memulai siklus kembali seperti di atas.
C.3. Reaktor Air Didih Lanjut (Advanced Boiling Water Reactor, ABWR)
ABWR adalah reaktor air didih lanjut, yaitu tipe modifikasi dari reaktor air didih yang ada pada saat ini. Perbaikan ditekankan pada keandalan, keselamatan, limbah yang rendah, kemudahan operasi dan faktor ekonomi. Perlengkapan khas ABWR yang mengalami perbaikan desain adalah (1) pompa internal, (2) penggerak batang kendali, (3) alat pengatur aliran uap, (4) sistem pendinginan teras darurat, (5) sungkup reaktor dari beton pra-tekan, (6) turbin, (7) alat pemanas untuk pemisah uap (penurun kelembaban), (8) sistem kendali dijital dan lain-lain.
C.4. CANDU
Reaktor CANDU atau CANada Deuterium Uranium adalah jenis reaktor air berat bertekanan yang menggunakan Uranium alam oksida sebagai bahan bakar. Reaktor ini dirancang oleh Atomic Energy Canada Limited (AECL) semenjak tahun 1950 di Kanada. Karena menggunakan bahan bakar Uranium alam, maka reaktor ini membuthkan moderator yang lebih efisien seperti air berat
Moderator reaktor CANDU terletak pada tangki besar yang disebut calandria, yang disusun oleh tabung-tabung bertekanan horisontal yang digunakan sebagai tempat bahan bakar, didinginkan oleh aliran air berat bertekanan tinggi yang mengalir melewati tangki calandria ini sampai mencapai suhu 290oC. Sama seperti Reaktor PWR, uap dihasilkan oleh aliran pendingin sekunder yang mendapat panas dari aliran pendingin utama. Dengan digunakannya tabung-tabung bertekanan sebagai tempat bahan bakar, memungkinkan untuk mengisi bahan bakar tanpa memadamkan reaktor dengan memisahkan tabung bahan bakar yang akan diisi dari aliran pendingin.
C.5. Reaktor tabung tekan
Reaktor tabung tekan merupakan reaktor yang terasnya tersusun atas pendingin air ringan (ada juga air berat) dan moderator air berat atau pendingin air ringan dan moderator grafit dalam pipa kalandria. Bahan pendingin dan bahan moderator dipisahkan oleh pipa tekan, sehingga bahan pendingin dan bahan moderator dapat dipilih secara terpisah. Pada kenyataannya terdapat variasi gabungan misalnya pendingin air ringan moderator air berat (Steam-Generating Heavy Water Reactor, SGHWR), pendingin air berat moderator air berat (Canadian Deuterium Uranium, CANDU), pendingin air ringan moderator grafit (Channel Type Graphite-moderated Water-cooled Reactor, RBMK). Teras reaktor terdiri dari banyak kanal bahan bakar dan dideretkan berbentuk kisi kubus di dalam tangki kalandria, bahan pendingin mengalir masing-masing di dalam pipa tekan, energi panas yang timbul pada kanal bahan bakar diubah menjadi energi penggerak turbin dan digunakan pada pembangkit listrik. Disebut juga rektor nuklir tipe kanal.
C.6. Pebble Bed Modular Reactor (PBMR)
Reaktor PBMR menawarkan tingkat keamanan yang baik. Proyek PBMR masa kini merupakan lanjutan dari usaha masa lalu dan dipiloti oleh konglomerat internasional USA berbasis Exelon Corporation (Commonwealth Edison PECO Energy), British Nuclear Fuels Limited dan South African based ESKsaya sebagai perusahaan reaktor.
PBMR menggunakan helium sebagai pendingin reaktor, berbahan bakar partikel uranium dioksida yang diperkaya, yang dilapisi dengan Silikon Karbida berdiameter kurang dari 1mm, dirangkai dalam matriks grafit. Bahan bakar ini terbukti tahan hingga suhu 1600oC dan tidak akan meleleh di bawah 3500oC. Bahan bakar dalam bola grafit akan bersirkulasi melalui inti reaktor karena itu disebut sistem pebble-bed.
C.7. Reaktor Magnox
Reaktor Magnox merupakan reaktor tipe lama dengan siklus bahan bakar yang sangat singkat (tidak ekonomis), dan dapat menghasilkan plutonium untuk senjata nuklir. Reaktor ini dikembangkan pertama sekali di Inggris dan di Inggris terdapat 11 PLTN dengan menggunakan 26 buah reaktor Magnox ini. Sampai tahun 2005 ini, hanya tinggal 4 buah reaktor Magnox yang beroperasi di Inggris dan akan didekomisioning pada tahun 2010.
Reaktor Magnox menggunakan CO2 bertekanan sebagai pendingin, grafit sebagai moderator dan berbahan bakar Uranium alam dengan logam Magnox sebagai pengungkung bahan bakarnya. Magnox merupakan nama dari logam campuran yaitu dengan logam utama Magnesium dengan sedikit Aluminium dan logam lainnya, yang digunakan sebagai pengungkung bahan bakar logam Uranium alam dengan penutup yang tidak mudah teroksidasi untuk menampung hasil fisi.
C.8. Advanced Gas-cooled Reactor (AGR)
Advanced Gas-Cooled Reactor (AGR) merupakan reaktor generasi kedua dari reaktor berpendingin gas yang dikembangkan Inggris. AGR merupakan pengembangan dari reaktor Magnox. Reaktor ini menggunakan grafit sebagai moderator netron, CO2 sebagai pendingin dan bahan bakarnya adalah pelet Uranium oksida yang diperkaya 2,5%-3,5% yang dikungkung di dalam tabung stainless steel. Gas CO2 yang mengalir di teras mencapai suhu 650oC dan kemudian memasuki tabung generator uap. Kemudian uap yang memasuki turbin akan diambil panasnya untuk menggerakkan turbin. Gas telah kehilangan panas masuk kembali ke teras.
C.9. Russian Reaktor Bolshoi Moshchnosty Kanalny
RBMK merupakan singkatan dari Russian Reaktor Bolshoi Moshchnosty Kanalny yang berari reaktor Rusia dengan saluran daya yang besar. Pada tahun 2004 masih terdapat beberapa reaktor RMBK yang masih beroperasi, namun tidak ada rencana untuk membangun reaktor jenis ini lagi. Keunikan reaktor RBMK terdapat pada moderator grafitnya yang dilengkapi dengan tabung untuk bahan bakar dan tabung untuk aliran pendingin.
Pada rancangan reaktor RBMK, terjadi pendidihan aliran pendingin di teras samapi mencapai suhu 290°C. Uap yang dihasilkan kemudian masuk ke perangkat pemisah uap yang memisahkan air dari uap. Uap yang telah dipisahkan kemudian mengalir menuju turbin, seperti pada rancangan reaktor BWR. Masalah yang dihadapi pada BWR yaitu uap yang dihasilkan bersifat radioaktif juga terjadi pada reaktor ini. Namun, dengan adanya pemisahan uap, maka terdapat waktu jeda yang menurunkan radiasi di sekitar turbin. Dengan menggunakan moderasi netron yang sangat bergantung pada grafit, apabila terjadi pendidihan yang berlebihan, maka aliran pendingin akan berkurang sehingga penyerapan netron juga berkurang, tetapi reaksi fisi akan semakin cepat sehingga dapat menimbulkan kecelakaan
Sumber : http://teknologi.kompasiana.com/
Posting Komentar
Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.